Почему? Зачем?

Решение логических уравнений по математике. Способы решения систем логических уравнений

Пусть – логическая функция от n переменных. Логическое уравнение имеет вид:

Константа С имеет значение 1 или 0.

Логическое уравнение может иметь от 0 до различных решений. Если С равно 1, то решениями являются все те наборы переменных из таблицы истинности, на которых функция F принимает значение истина (1). Оставшиеся наборы являются решениями уравнения при C, равном нулю. Можно всегда рассматривать только уравнения вида:

Действительно, пусть задано уравнение:

В этом случае можно перейти к эквивалентному уравнению:

Рассмотрим систему из k логических уравнений:

Решением системы является набор переменных, на котором выполняются все уравнения системы. В терминах логических функций для получения решения системы логических уравнений следует найти набор, на котором истинна логическая функция Ф, представляющая конъюнкцию исходных функций :

Если число переменных невелико, например, менее 5, то нетрудно построить таблицу истинности для функции , что позволяет сказать, сколько решений имеет система и каковы наборы, дающие решения.

В некоторых задачах ЕГЭ по нахождению решений системы логических уравнений число переменных доходит до значения 10. Тогда построить таблицу истинности становится практически неразрешимой задачей. Для решения задачи требуется другой подход. Для произвольной системы уравнений не существует общего способа, отличного от перебора, позволяющего решать такие задачи.

В предлагаемых на экзамене задачах решение обычно основано на учете специфики системы уравнений. Повторяю, кроме перебора всех вариантов набора переменных, общего способа решения задачи нет. Решение нужно строить исходя из специфики системы. Часто полезно провести предварительное упрощение системы уравнений, используя известные законы логики. Другой полезный прием решения этой задачи состоит в следующем. Нам интересны не все наборы, а только те, на которых функция имеет значение 1. Вместо построения полной таблицы истинности будем строить ее аналог - бинарное дерево решений. Каждая ветвь этого дерева соответствует одному решению и задает набор, на котором функция имеет значение 1. Число ветвей в дереве решений совпадает с числом решений системы уравнений.

Что такое бинарное дерево решений и как оно строится, поясню на примерах нескольких задач.

Задача 18

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют системе из двух уравнений?

Ответ: Система имеет 36 различных решений.

Решение: Система уравнений включает два уравнения. Найдем число решений для первого уравнения, зависящего от 5 переменных – . Первое уравнение можно в свою очередь рассматривать как систему из 5 уравнений. Как было показано, система уравнений фактически представляет конъюнкцию логических функций. Справедливо и обратное утверждение, - конъюнкцию условий можно рассматривать как систему уравнений.

Построим дерево решений для импликации () - первого члена конъюнкции, который можно рассматривать как первое уравнение. Вот как выглядит графическое изображение этого дерева


Дерево состоит из двух уровней по числу переменных уравнения. Первый уровень описывает первую переменную . Две ветви этого уровня отражают возможные значения этой переменной – 1 и 0. На втором уровне ветви дерева отражают только те возможные значения переменной , для которых уравнение принимает значение истина. Поскольку уравнение задает импликацию, то ветвь, на которой имеет значение 1, требует, чтобы на этой ветви имело значение 1. Ветвь, на которой имеет значение 0, порождает две ветви со значениями , равными 0 и 1. Построенное дерево задает три решения, на которых импликация принимает значение 1. На каждой ветви выписан соответствующий набор значений переменных, дающий решение уравнения.

Вот эти наборы: {(1, 1), (0, 1), (0, 0)}

Продолжим построение дерева решений, добавляя следующее уравнение, следующую импликацию . Специфика нашей системы уравнений в том, что каждое новое уравнение системы использует одну переменную из предыдущего уравнения, добавляя одну новую переменную. Поскольку переменная уже имеет значения на дереве, то на всех ветвях, где переменная имеет значение 1, переменная также будет иметь значение 1. Для таких ветвей построение дерева продолжается на следующий уровень, но новые ветви не появляются. Единственная ветвь, где переменная имеет значение 0, даст разветвление на две ветви, где переменная получит значения 0 и 1. Таким образом, каждое добавление нового уравнения, учитывая его специфику, добавляет одно решение. Исходное первое уравнение:

имеет 6 решений. Вот как выглядит полное дерево решений для этого уравнения:


Второе уравнение нашей системы аналогично первому:

Разница лишь в том, что в уравнении используются переменные Y. Это уравнение также имеет 6 решений. Поскольку каждое решение для переменных может быть скомбинировано с каждым решением для переменных , то общее число решений равно 36.

Заметьте, построенное дерево решений дает не только число решений (по числу ветвей), но и сами решения, выписанные на каждой ветви дерева.

Задача 19

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют всем перечисленным ниже условиям?

Эта задача является модификацией предыдущей задачи. Разница в том, что добавляется еще одно уравнение, связывающее переменные X и Y.

Из уравнения следует, что когда имеет значение 1(одно такое решение существует), то и имеет значение 1. Таким образом, существует один набор, на котором и имеют значения 1. При , равном 0, может иметь любое значение, как 0, так и 1. Поэтому каждому набору с , равном 0, а таких наборов 5, соответствует все 6 наборов с переменными Y. Следовательно, общее число решений равно 31.

Задача 20

Решение: Вспоминания основные эквивалентности, запишем наше уравнение в виде:

Циклическая цепочка импликаций означает тождественность переменных, так что наше уравнение эквивалентно уравнению:

Это уравнение имеет два решения, когда все равны либо 1, либо 0.

Задача 21

Сколько решений имеет уравнение:

Решение: Так же, как и в задаче 20, от циклических импликаций перейдем к тождествам, переписав уравнение в виде:

Построим дерево решений для этого уравнения:


Задача 22

Сколько решений имеет следующая система уравнений?

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике существуют определенные задачи, которые посвящены логике высказываний. Чтобы решить данного рода уравнения необходимо обладать неким багажом знаний: знания законов логики высказываний, знания таблиц истинности логических функций 1 или 2 переменных, методы преобразования логических выражений. Кроме того, необходимо знать следующие свойства логических операций: конъюнкции, дизъюнкции, инверсии, импликации и эквивалентности.

Любую логическую функцию от \ переменных - \можно задать таблицей истинности.

Решим несколько логически уравнений:

\[\rightharpoondown X1\vee X2=1 \]

\[\rightharpoondown X2\vee X3=1\]

\[\rightharpoondown X3\vee X4=1 \]

\[\rightharpoondown X9\vee X10=1\]

Начнем решение с \[Х1\] и определим какие значения данная переменная может принимать: 0 и 1. Далее рассмотрим каждое их вышеприведенных значений и посмотрим, какое может быть при этом \[Х2.\]

Как видно из таблицы наше логическое уравнение имеет 11 решений.

Где можно решить логическое уравнение онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

По завершению года оказалось, что только одно из трех предположений истинно. Какие подразделения получили по итогам года прибыль?

Решение. Запишем предположения из условия задачи в виде логических высказываний: «Получение прибыли подразделениемB не является необходимым условием для получения

прибыли подразделением A »:F 1 (A , B , C ) = A → B

«Получение прибыли хотя бы одним подразделений B иC не является достаточным для получения прибыли подразделениемA »:F 2 (A , B , C ) = (B + C ) → A

«Подразделения A иB не получат прибыль одновременно»:F 3 (A , B , C ) = A B

Из условия известно, что только одно из трех предположений истинно. Это значит, что мы должны найти какое из трех следующих логических выражений не является тождественно ложным:

1) F 1F 2F 3

2) F 1F 2F 3

3) F 1F 2F 3

1) (A→ B) ((B+ C) → A) (A↔ B) = A B(B C+ A) (A B+ A B) = 0

2) (A→ B) ((B+ C) → A) (A↔ B) = (A+ B) (A B+ A C) (A B+ A B) = A B C

3) (A→ B) ((B+ C) → A) (A B) = (A+ B) (B C+ A) (A B+ A B) = 0

Следовательно, по итогам годы истинным оказалось второе предположение, а первое и третье – ложными.

A = 0

F1 F2 F3 = A B C= 1

в том и только в том случае, когда B = 0 .

C = 1

Следовательно, что прибыль получит подразделение C , а подразделенияA иB прибыль не получат.

Решение логических уравнений

В текстах государственного централизованного тестирования есть задание (А8), в котором предлагается найти корень логического уравнения. Давайте разберем способы решения подобных заданий на примере.

Найти корень логического уравнения: (A + B )(X AB ) = B + X → A .

Первый способ решения – построение таблицы истинности. Построим таблицы истинности правой и левой части уравнения и посмотрим, при каком X , значения в последних столбцах этих таблиц совпадут.

F1 (A, B, X) = (A+ B)(X AB)

A + B

(A+ B)(X AB)

F 1 (A ,B ,X )

F2 (A, B, X) = B+ X→ A

X → A

F 2 (A ,B ,X )

X → A

X → A

Сравним полученные таблицы истинности и выберем те строки, в которых значения F 1 (A , B , X ) иF 2 (A , B , X ) совпадают.

F 1 (A ,B ,X )

F 2 (A ,B ,X )

Перепишем только выбранные строки, оставив только столбцы аргументов. Посмотрим на переменную X как на функцию отA иB .

Очевидно, что X = B → A .

Второй способ решения – заменить знак равенства в уравнении на знак эквиваленции, а затем упростить полученное логическое уравнение.

Для облегчения дальнейшей работы предварительно упростим правую и левую части логического уравнения и найдем их отрицания:

F1 = (A+ B)(X AB) = A+ B+ (X↔ AB) = A B+ X A B+ X A+ X B

F1 = (A+ B)(X AB) = (A+ B)(X A+ X B+ X A B) = X A B+ X A B+ X A B

F2 = B+ X→ A= B(X→ A) = B(X+ A) = X B+ A B F2 = B+ X→ A= B+ X+ A= B+ X A

Заменим в нашем логическом уравнении знак равенства на знак эквивалентности:

F1 ↔ F2 = F1 F2 + F1 F2 = (A B+ X A B+ X A+ X B) (X B+ A B) +

+ (X A B+ X A B+ X A B) (B+ X A) =

= (X A B+ X B+ X A B) + (X A B+ X A B) =

Перегруппируем логические слагаемые данного выражения, вынеся за скобку множители X иX .

X(A B) + X(B+ AB) = X(A B) + X(B+ A) =

Обозначим T = A B , тогда

X T+ X T= X↔ T.

Следовательно, чтобы логическое уравнение имеет решение: X = A B = B + A = B → A .

Логические элементы ЭВМ. Построение функциональных схем

Математическая логика с развитием ВТ оказалась в тесной взаимосвязи с вопросами конструирования и программирования вычислительной техники. Алгебра логики нашла широкое применение первоначально при разработке релейно-контактных схем . Первым фундаментальным исследованием, обратившим внимание инженеров, занимавшихся проектированием ЭВМ, на возможность анализа электрических цепей с помощью булевой алгебры была опубликована в декабре 1938 года статья американца Клода Шеннона «Символический анализ релейно-контактных схем». После этой статьи проектирование ЭВМ не обходилось без применения булевой алгебры.

Логический элемент - это схема, реализующая логические операции дизъюнкции, конъюнкции и инверсии. Рассмотрим реализацию логических элементов через электрические релейно-контактные схемы, знакомые вам из школьного курса физики.

Последовательное соединение контактов

Параллельное соединение контактов

Составим таблицу зависимостей состояния цепей от всевозможных состояний контактов. Введем обозначения: 1 – контакт замкнут, ток в цепи есть; 0 – контакт разомкнут, тока в цепи нет.

Состояние цепи с

Состояние цепи с параллельным

последовательным соединением

соединением

Как видно, цепь с последовательным соединением соответствует логической операции конъюнкция, так как ток в цепи появляется только при одновременном замыкании контактов A иB . Цепь с параллельным соединением соответствует логической операции дизъюнкция, так как ток в цепи отсутствует только в момент, когда оба контакта разомкнуты.

Логическая операция инверсии реализуется через контактную схему электромагнитного реле, принцип которого изучается в школьном курсе физики. Контакт x разомкнут, когдаx замкнут, и наоборот.

Использование релейно-контактных элементов для построения логических схем вычислительных машин не оправдало себя ввиду низкой надежности, больших габаритов, большого энергопотребления и низкого быстродействия. Появление электронных приборов (вакуумных и полупроводниковых) создало возможность построения логических элементов с быстродействием от 1 миллиона переключений в секунду и выше. Логические элементы на полупроводниках работают в режиме ключа аналогично электромагнитному реле. Вся теория, изложенная для контактных схем, переносится на полупроводниковые элементы. Логические элементы на полупроводниках характеризуются не состоянием контактов, а наличием сигналов на входе и выходе.

Рассмотрим логические элементы, реализующие основные логические операции:

Инвертор - реализует операцию отрицания или инверсию. У

инвертора один вход и один выход. Сигнал на выходе появляется

тогда, когда на входе его нет, и наоборот.

Конъюнктор -

X1 X2 ... Xn

реализует операцию конъюнкции.

У конъюнктора

один выход и не менее двух входов. Сигнал на

выходе появляется тогда и только тогда, когда на

все входы поданы сигналы.

X2 + ... Xn

Дизъюнктор - реализует операцию дизъюнкции. У

дизъюнктора один выход и не менее двух

Сигнал на выходе не появляется тогда и только тогда,

когда на все входы не поданы сигналы.

Построить

функциональную

F(X, Y, Z) = X(Y+ Z)

X + Z

схему, соответствующую функции:

& F(X, Y, Z)

Решение задач с использованием конъюнктивно-нормальной

и дизъюнктивно-нормальной форм

В задачниках по логике часто встречаются стандартные задачи, где нужно записать функцию, реализующую релейно-контактную схему, упростить ее и построить таблицу истинности для этой функции. А как решать обратную задачу? Дана произвольная таблица истинности, нужно построить функциональную или релейно-контактную схему. Этим вопросом мы и займемся сегодня.

Любую функцию алгебры логики можно представить комбинацией трех операций: конъюнкции, дизъюнкции и инверсии. Давайте разберемся, как это делается. Для этого запишем несколько определений.

Минтерм - это функция, образованная конъюнкцией некоторого числа переменных или их отрицаний. Минтерм принимает значение 1 при единственном из всех возможных наборов

аргументов, и значение 0 при всех остальных. Пример: x 1 x 2 x 3 x 4 .

Макстерм - это функция, образованная дизъюнкцией некоторого числа переменных или их отрицаний. Макстерм принимает значение 0 в одном из возможных наборов, и 1 при всех других.

Пример: x 1 + x 2 + x 3 .

Функция в дизъюнктивной нормальной форме (ДНФ) является логической суммой минтермов.

Пример: x 1x 2+ x 1x 2+ x 1x 2x 3.

Конъюнктивная нормальная форма (КНФ) является логическим произведением элементарных дизъюнкций (макстермов).

Пример: (x 1+ x 2+ x 3) (x 1+ x 2) .

Совершенной дизъюнктивно-нормальной формойназывается ДНФ, в каждом минтерме которой присутствуют все переменные или их отрицания.

Пример: x 1x 2x 3+ x 1x 2x 3+ x 1x 2x 3

Совершенной конъюктивно-нормальной формойназывается КНФ, в каждом макстерме которой присутствуют все переменные или их отрицания.

Пример: (x 1+ x 2+ x 3) (x 1+ x 2+ x 3)

Запись логической функции по таблице

Любая логическая функция может быть выражена в виде СДНФ или СКНФ. В качестве примера рассмотрим функцию f , представленную в таблице.

f(x1 , x2 , x3 )

Функции G0, G1, G4, G5, G7 – это минтермы (см. определение). Каждая из этих функций является произведением трех переменных или их инверсий и принимает значение 1 только в одной ситуации. Видно, что для того, чтобы получить 1 в значении функции f, нужен один минтерм. Следовательно, количество минтермов, составляющих СДНФ этой функции, равно количеству единиц в значении функции: f= G0+G1+G4+G5+G7. Таким образом, СДНФ имеет вид:

f (x 1, x 2, x 3) = x 1x 2x 3+ x 1x 2x 3+ x 1x 2x 3+ x 1x 2x 3+ x 1x 2x 3.

Аналогично можно построить СКНФ. Количество сомножителей равно количеству нулей в значениях функции:

f (x 1, x 2, x 3) = (x 1+ x 2+ x 3) (x 1+ x 2+ x 3) (x 1+ x 2+ x 3) .

Таким образом, можно записать в виде формулы любую логическую функцию, заданную в виде таблицы.

Алгоритм построения СДНФ по таблице истинности

Дана таблица истинности некоторой функции. Для построения СДНФ необходимо выполнить следующую последовательность шагов:

1. Выбрать все строки таблицы, в которых функция принимает значение 1.

2. Каждой такой строке поставить в соответствие конъюнкцию всех аргументов или их инверсий (минтерм). При этом аргумент, принимающий значение 0, входит в минтерм с отрицанием, а значение 1 – без отрицания.

3. Наконец, образуем дизъюнкцию всех полученных минтермов. Количество минтермов должно совпадать с количеством единиц логической функции.

Алгоритм построения СКНФ по таблице истинности

Дана таблица истинности некоторой функции. Для построения СКНФ необходимо выполнить следующую последовательность шагов:

1. Выбрать все строки таблицы, в которых функция принимает значение 0.

2. Каждой такой строке поставить в соответствие дизъюнкцию всех аргументов или их инверсий (макстерм). При этом аргумент, принимающий значение 1, входит в макстерм с отрицанием, а значение 1 – без отрицания.

3. Наконец, образуем конъюнкцию всех полученных макстермов. Количество макстермов должно совпадать с количеством нулей логической функции.

Если условиться из двух форм (СДНФ или СКНФ) отдавать предпочтение той, которая содержит меньше букв, то СДНФ предпочтительней, если среди значений функции таблицы истинности меньше единиц, СКНФ – если меньше нулей.

Пример. Дана таблица истинности логической функции от трех переменных. Построить логическую формулу, реализующую эту функцию.

F(A, B, C)

Выберем те строки в данной таблице истинности, в которых значения функции равна 0.

F(A, B, C) = (A+ B+ C) (A+ B+ C)

Проверим выведенную функцию, составив таблицу истинности.

Сравнив начальную и итоговую таблицу истинности можно сделать вывод, что логическая функция построена правильно.

Решение задач

1. Три преподавателя отбирают задачи для олимпиады. На выбор предлагается несколько задач. По каждой задаче каждый из преподавателей высказывает свое мнение: легкая (0) или трудная (1) задача. Задача включается в олимпиадное задание, если не менее двух преподавателей отметили ее как трудную, но если все три преподавателя считают ее трудной, то такая задача не включается в олимпиадное задание как слишком сложная. Составьте логическую схему устройства, которое будет выдавать на выходе 1, если задача включается в олимпиадное задание, и 0, если не включается.

Построим таблицу истинности искомой функции. У нас есть три входные переменные (три преподавателя). Следовательно, искомая функция будет функцией от трех переменных.

Анализируя условие задачи, получаем следующую таблицу истинности:

Строим СДНФ. F(A, B, C) = ABC+ ABC+ ABC

Теперь строим логическую схему этой функции.

B & 1F(A,B,C)

2. Городская олимпиада по базовому курсу информатики, 2007 год. Постройте схему электрической цепи для подъезда трехэтажного дома такую, чтобы выключателем на любом этаже можно было бы включить или выключить свет во всем доме.

Итак, у нас есть три выключателя, которыми мы должны включать и выключать свет. У каждого выключателя есть два состояния: верхнее (0) и нижнее (1). Предположим, что если все три выключателя в положении 0, свет в подъезде выключен. Тогда при переводе любого из трех выключателей в положение 1 свет в подъезде должен загореться. Очевидно, что при переводе любого другого выключателя в положение 1, свет в подъезде выключится. Если третий выключатель перевести в положение 1, свет в подъезде загорится. Строим таблицу истинности.

Тогда, F(A, B, C) = ABC+ ABC+ ABC+ ABC.

3. Условие изменения

значения логической функции

F(A, B, C) = C→

A + B

одновременном изменении аргументов B иC равно:

A → (B C)

(B C) → A

A(B C)

4) (B C) → A

A → (B C)

Примечание. Для успешного решения данной задачи вспомним следующие логические формулы:

x → y= x+ y x y= x y+ x y

x ↔ y= x y+ x y

Нам дана логическая функция от трех переменных F 1 (A , B , C ) = C → A + B = C + A B .

Изменим одновременно переменные B иC :F 2 (A , B , C ) = F 1 (A , B , C ) = C + A B . Построим таблицы истинности этих двух функций:

Анализируем полученную таблицу. Из восьми строк таблицы лишь в двух (2-й и 3-й) функция не изменяет своего значения. Обратите внимание, что в этих строках переменнаяA не изменяет своего значения на противоположное, а переменныеB иC – изменяют.

Строим СКНФ функции по этим строкам:

F3 (A, B, C) = (A+ B+ C) (A+ B C) = A+ AB+ AC+ AB+ BC+ AC+ B C= .

A+ (B↔ C) = A+ B C= (B C) → A

Следовательно, искомый ответ – 4.

4. Условие изменения значения логической функции F (A , B , C ) = C + AB при одновременном изменении аргументовA иB равно:

1) C+ (A B)

C + (A B)

C(A B)

4) C(A B)

C → (A B)

F 1 (A ,B ,C )=

C + AB

F 2 (A ,B ,C )= F 1 (

C )= A

Строим таблицу истинности.

Анализируем полученную таблицу. Из восьми строк таблицы лишь в двух (1-й и 7-й) функция меняет свое значение. Обратите внимание, что в этих строках переменная С не меняет свое значение, а переменные A и B – меняют.

Строим СДНФ функции по этим строкам:

F3 (A, B, C) = A B C+ A B C= C(A B+ A B) = C(A↔ B) = C+ (A B)

Следовательно, искомый ответ – 2.

Использованная литература

1. Шапиро С.И. Решение логических и игровых задач (логико-психологические этюды). – М.: Радио и связь, 1984. – 152 с.

2. Шоломов Л.А. Основы теории дискретных логических и вычислительных устройств. – М.: Наука. Гл. ред. физ. - мат. лит., 1980. - 400 с.

3. Пухальский Г.И., Новосельцева Т.Я. Проектирование дискретных устройств на интегральных микросхемах.: Справочник. – М.: Радио и связь, 1990.

Как решать некоторые задачи разделов A и B экзамена по информатике

Урок №3. Логика. Логические функции. Решение уравнений

Большое количество задач ЕГЭ посвящено логике высказываний. Для решения большинства из них достаточно знания основных законов логики высказываний, знания таблиц истинности логических функций одной и двух переменных. Приведу основные законы логики высказываний.

  1. Коммутативность дизъюнкции и конъюнкции:
    a ˅ b ≡ b ˅ a
    a ^ b ≡ b ^ a
  2. Дистрибутивный закон относительно дизъюнкции и конъюнкции:
    a ˅ (b^с) ≡ (a ˅ b) ^(a ˅ с)
    a ^ (b ˅ с) ≡ (a ^ b) ˅ (a ^ с)
  3. Отрицание отрицания:
    ¬(¬а) ≡ а
  4. Непротиворечивость:
    a ^ ¬а ≡ false
  5. Исключающее третье:
    a ˅ ¬а ≡ true
  6. Законы де-Моргана:
    ¬(а ˅ b) ≡ ¬а ˄ ¬b
    ¬(а ˄ b) ≡ ¬а ˅ ¬b
  7. Упрощение:
    a ˄ a ≡ a
    a ˅ a ≡ a
    a ˄ true ≡ a
    a ˄ false ≡ false
  8. Поглощение:
    a ˄ (a ˅ b) ≡ a
    a ˅ (a ˄ b) ≡ a
  9. Замена импликации
    a → b ≡ ¬a ˅ b
  10. Замена тождества
    a ≡ b ≡(a ˄ b) ˅ (¬a ˄ ¬b)

Представление логических функций

Любую логическую функцию от n переменных – F(x 1 , x 2 , … x n) можно задать таблицей истинности. Такая таблица содержит 2 n наборов переменных, для каждого из которых задается значение функции на этом наборе. Такой способ хорош, когда число переменных относительно невелико. Уже при n > 5 представление становится плохо обозримым.

Другой способ состоит в том, чтобы задавать функцию некоторой формулой, используя известные достаточно простые функции. Система функций {f 1 , f 2 , … f k } называется полной, если любую логическую функцию можно выразить формулой, содержащей только функции f i .

Полной является система функций {¬, ˄, ˅}. Законы 9 и 10 являются примерами, демонстрирующими, как импликация и тождество выражается через отрицание, конъюнкцию и дизъюнкцию.

Фактически полной является и система из двух функций – отрицания и конъюнкции или отрицания и дизъюнкции. Из законов де-Моргана следуют представления, позволяющие выразить конъюнкцию через отрицание и дизъюнкцию и соответственно выразить дизъюнкцию через отрицание и конъюнкцию:

(а ˅ b) ≡ ¬(¬а ˄ ¬b)
(а ˄ b) ≡ ¬(¬а ˅ ¬b)

Парадоксально, но полной является система, состоящая всего из одной функции. Существуют две бинарные функции – антиконънкция и антидизъюнкция, называемые стрелкой Пирса и штрих Шеффера, представляющие полую систему.

В состав базовых функций языков программирования включают обычно тождество, отрицание, конъюнкцию и дизъюнкцию. В задачах ЕГЭ наряду с этими функциями часто встречается импликация.

Рассмотрим несколько простых задач, связанных с логическими функциями.

Задача 15:

Дан фрагмент таблицы истинности. Какая из трех приведенных функций соответствует этому фрагменту?

X 1 X 2 X 3 X 4 F
1 1 0 0 1
0 1 1 1 1
1 0 0 1 0
  1. (X 1 → X 2) ˄ ¬ X 3 ˅ X 4
  2. (¬ X 1 ˄ X 2) ˅ (¬X 3 ˄ X 4)
  3. ¬ X 1 ˅ X 2 ˅ (X 3 ˄ X 4)

Функция под номером 3.

Для решения задачи нужно знать таблицы истинности базовых функций и помнить о приоритетах операций. Напомню, что конъюнкция (логическое умножение) имеет более высокий приоритет и выполняется раньше, чем дизъюнкция (логическое сложение). При вычислениях нетрудно заметить, что функции с номерами 1 и 2 на третьем наборе имеют значение 1 и уже по этой причине фрагменту не соответствуют.

Задача 16:

Какое из приведенных чисел удовлетворяет условию:

(цифры, начиная со старшего разряда, идут в порядке убывания) → (число — четное) ˄ (младшая цифра – четная) ˄ (старшая цифра – нечетная)

Если таких чисел несколько, укажите наибольшее.

  1. 13579
  2. 97531
  3. 24678
  4. 15386

Условию удовлетворяет число под номером 4.

Первые два числа условию не удовлетворяют уже по той причине, что младшая цифра является нечетной. Конъюнкция условий ложна, если один из членов конъюнкции ложен. Для третьего числа не выполняется условие для старшей цифры. Для четвертого числа выполняются условия, накладываемые на младшую и старшую цифры числа. Первый член конъюнкции также истинен, поскольку импликация истинна, если ее посылка ложна, что имеет место в данном случае.

Задача 17: Два свидетеля дали следующие показания:

Первый свидетель: Если А виновен, то В и подавно виновен, а С – невиновен.

Второй свидетель: Виновны двое. А точно виновен и виновен один из оставшихся, но кто именно сказать не могу.

Какие заключения о виновности А, В и С можно сделать на основании свидетельских показаний?

Ответ: Из свидетельских показаний следует, что А и В виновны, а С – невиновен.

Решение: Конечно, ответ можно дать, основываясь на здравом смысле. Но давайте рассмотрим, как это можно сделать строго и формально.

Первое, что нужно сделать – это формализовать высказывания. Введем три логические переменные — А, В и С, каждая из которых имеет значение true (1), если соответствующий подозреваемый виновен. Тогда показания первого свидетеля задаются формулой:

A → (B ˄ ¬C)

Показания второго свидетеля задаются формулой:

A ˄ ((B ˄ ¬C) ˅ (¬B ˄ C))

Показания обоих свидетелей полагаются истинными и представляют конъюнкцию соответствующих формул.

Построим таблицу истинности для этих показаний:

A B C F 1 F 2 F 1 ˄ F 2
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 1 1
1 1 1 0 0 0

Суммарные свидетельские показания истинны только в одном случае, приводящие к однозначному ответу – А и В виновны, а С – невиновен.

Из анализа этой таблицы также следует, что показания второго свидетеля более информативны. Из истинности его показания следует только два возможных варианта — А и В виновны, а С – невиновен или А и С виновны, а В – невиновен. Показания первого свидетеля менее информативны – существует 5 различных вариантов, соответствующих его показаниям. Совместно показания обоих свидетелей дают однозначный ответ о виновности подозреваемых.

Логические уравнения и системы уравнений

Пусть F(x 1 , x 2 , …x n) – логическая функция от n переменных. Логическое уравнение имеет вид:

F(x 1 , x 2 , …x n) = С,

Константа С имеет значение 1 или 0.

Логическое уравнение может иметь от 0 до 2 n различных решений. Если С равно 1, то решениями являются все те наборы переменных из таблицы истинности, на которых функция F принимает значение истина (1). Оставшиеся наборы являются решениями уравнения при C, равном нулю. Можно всегда рассматривать только уравнения вида:

F(x 1 , x 2 , …x n) = 1

Действительно, пусть задано уравнение:

F(x 1 , x 2 , …x n) = 0

В этом случае можно перейти к эквивалентному уравнению:

¬F(x 1 , x 2 , …x n) = 1

Рассмотрим систему из k логических уравнений:

F 1 (x 1 , x 2 , …x n) = 1

F 2 (x 1 , x 2 , …x n) = 1

F k (x 1 , x 2 , …x n) = 1

Решением системы является набор переменных, на котором выполняются все уравнения системы. В терминах логических функций для получения решения системы логических уравнений следует найти набор, на котором истинна логическая функция Ф, представляющая конъюнкцию исходных функций F:

Ф = F 1 ˄ F 2 ˄ … F k

Если число переменных невелико, например, менее 5, то нетрудно построить таблицу истинности для функции Ф, что позволяет сказать, сколько решений имеет система и каковы наборы, дающие решения.

В некоторых задачах ЕГЭ по нахождению решений системы логических уравнений число переменных доходит до значения 10. Тогда построить таблицу истинности становится практически неразрешимой задачей. Для решения задачи требуется другой подход. Для произвольной системы уравнений не существует общего способа, отличного от перебора, позволяющего решать такие задачи.

В предлагаемых на экзамене задачах решение обычно основано на учете специфики системы уравнений. Повторяю, кроме перебора всех вариантов набора переменных, общего способа решения задачи нет. Решение нужно строить исходя из специфики системы. Часто полезно провести предварительное упрощение системы уравнений, используя известные законы логики. Другой полезный прием решения этой задачи состоит в следующем. Нам интересны не все наборы, а только те, на которых функция Ф имеет значение 1. Вместо построения полной таблицы истинности будем строить ее аналог — бинарное дерево решений. Каждая ветвь этого дерева соответствует одному решению и задает набор, на котором функция Ф имеет значение 1. Число ветвей в дереве решений совпадает с числом решений системы уравнений.

Что такое бинарное дерево решений и как оно строится, поясню на примерах нескольких задач.

Задача 18

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют системе из двух уравнений?

Ответ: Система имеет 36 различных решений.

Решение: Система уравнений включает два уравнения. Найдем число решений для первого уравнения, зависящего от 5 переменных – x 1 , x 2 , …x 5 . Первое уравнение можно в свою очередь рассматривать как систему из 5 уравнений. Как было показано, система уравнений фактически представляет конъюнкцию логических функций. Справедливо и обратное утверждение, — конъюнкцию условий можно рассматривать как систему уравнений.

Построим дерево решений для импликации (x1→ x2) — первого члена конъюнкции, который можно рассматривать как первое уравнение. Вот как выглядит графическое изображение этого дерева:

Дерево состоит из двух уровней по числу переменных уравнения. Первый уровень описывает первую переменную X 1 . Две ветви этого уровня отражают возможные значения этой переменной – 1 и 0. На втором уровне ветви дерева отражают только те возможные значения переменной X 2 , для которых уравнение принимает значение истина. Поскольку уравнение задает импликацию, то ветвь, на которой X 1 имеет значение 1, требует, чтобы на этой ветви X 2 имело значение 1. Ветвь, на которой X 1 имеет значение 0, порождает две ветви со значениями X 2 , равными 0 и 1. Построенное дерево задает три решения, на которых импликация X 1 → X 2 принимает значение 1. На каждой ветви выписан соответствующий набор значений переменных, дающий решение уравнения.

Вот эти наборы: {(1, 1), (0, 1), (0, 0)}

Продолжим построение дерева решений, добавляя следующее уравнение, следующую импликацию X 2 → X 3 . Специфика нашей системы уравнений в том, что каждое новое уравнение системы использует одну переменную из предыдущего уравнения, добавляя одну новую переменную. Поскольку переменная X 2 уже имеет значения на дереве, то на всех ветвях, где переменная X 2 имеет значение 1, переменная X 3 также будет иметь значение 1. Для таких ветвей построение дерева продолжается на следующий уровень, но новые ветви не появляются. Единственная ветвь, где переменная X 2 имеет значение 0, даст разветвление на две ветви, где переменная X 3 получит значения 0 и 1. Таким образом, каждое добавление нового уравнения, учитывая его специфику, добавляет одно решение. Исходное первое уравнение:

(x1→x2) /\ (x2→x3) /\ (x3→x4) /\ (x4→x5) = 1
имеет 6 решений. Вот как выглядит полное дерево решений для этого уравнения:

Второе уравнение нашей системы аналогично первому:

(y1→y2) /\ (y2→y3) /\ (y3→y4) /\ (y4→y5) = 1

Разница лишь в том, что в уравнении используются переменные Y. Это уравнение также имеет 6 решений. Поскольку каждое решение для переменных X i может быть скомбинировано с каждым решением для переменных Y j , то общее число решений равно 36.

Заметьте, построенное дерево решений дает не только число решений (по числу ветвей), но и сами решения, выписанные на каждой ветви дерева.

Задача 19

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, которые удовлетворяют всем перечисленным ниже условиям?

(x1→x2) /\ (x2→x3) /\ (x3→x4) /\ (x4→x5) = 1
(y1→y2) /\ (y2→y3) /\ (y3→y4) /\ (y4→y5) = 1
(x1→y1) = 1

Эта задача является модификацией предыдущей задачи. Разница в том, что добавляется еще одно уравнение, связывающее переменные X и Y.

Из уравнения X 1 → Y 1 следует, что когда X 1 имеет значение 1(одно такое решение существует), то и Y 1 имеет значение 1. Таким образом, существует один набор, на котором X 1 и Y 1 имеют значения 1. При X 1 , равном 0, Y 1 может иметь любое значение, как 0, так и 1. Поэтому каждому набору с X 1 , равном 0, а таких наборов 5, соответствует все 6 наборов с переменными Y. Следовательно, общее число решений равно 31.

Задача 20

(¬X 1 ˅ X 2) ˄ (¬X 2 ˅ X 3) ˄ (¬X 3 ˅ X 4) ˄ (¬X 4 ˅ X 5) ˄ (¬X 5 ˅ X 1) = 1

Решение: Вспоминания основные эквивалентности, запишем наше уравнение в виде:

(X 1 → X 2) ˄ (X 2 → X 3) ˄ (X 3 → X 4) ˄ (X 4 → X 5) ˄ (X 5 → X 1) = 1

Циклическая цепочка импликаций означает тождественность переменных, так что наше уравнение эквивалентно уравнению:

X 1 ≡ X 2 ≡ X 3 ≡ X 4 ≡ X 5 = 1

Это уравнение имеет два решения, когда все X i равны либо 1, либо 0.

Задача 21

(X 1 → X 2) ˄ (X 2 → X 3) ˄ (X 3 → X 4) ˄ (X 4 → X 2) ˄ (X 4 → X 5) = 1

Решение: Так же, как и в задаче 20, от циклических импликаций перейдем к тождествам, переписав уравнение в виде:

(X 1 → X 2) ˄ (X 2 ≡ X 3 ≡ X 4) ˄ (X 4 → X 5) = 1

Построим дерево решений для этого уравнения:

Задача 22

Сколько решений имеет следующая система уравнений?

((X 1 ≡ X 2) ˄ (X 3 ≡ X 4)) ˅(¬(X 1 ≡ X 2) ˄ ¬(X 3 ≡ X 4)) = 0

((X 3 ≡ X 4) ˄ (X 5 ≡ X 6)) ˅(¬(X 3 ≡ X 4) ˄ ¬(X 5 ≡ X 6)) = 0

((X 5 ≡ X 6) ˄ (X 7 ≡ X 8)) ˅(¬(X 5 ≡ X 6) ˄ ¬(X 7 ≡ X 8)) = 0

((X 7 ≡ X 8) ˄ (X 9 ≡ X 10)) ˅(¬(X 7 ≡ X 8) ˄ ¬(X 9 ≡ X 10)) = 0

Ответ: 64

Решение: Перейдем от 10 переменных к 5 переменным, введя следующую замену переменных:

Y 1 = (X 1 ≡ X 2); Y 2 = (X 3 ≡ X 4); Y 3 = (X 5 ≡ X 6); Y 4 = (X 7 ≡ X 8); Y 5 = (X 9 ≡ X 10);

Тогда первое уравнение примет вид:

(Y 1 ˄ Y 2) ˅ (¬Y 1 ˄ ¬Y 2) = 0

Уравнение можно упростить, записав его в виде:

(Y 1 ≡ Y 2) = 0

Переходя к традиционной форме, запишем систему после упрощений в виде:

¬(Y 1 ≡ Y 2) = 1

¬(Y 2 ≡ Y 3) = 1

¬(Y 3 ≡ Y 4) = 1

¬(Y 4 ≡ Y 5) = 1

Дерево решений для этой системы простое и состоит из двух ветвей с чередующимися значениями переменных:


Возвращаясь к исходным переменным X, заметим, что каждому значению переменной Y соответствует 2 значения переменных X, поэтому каждое решение в переменных Yпорождает 2 5 решений в переменных X. Две ветви порождают 2 * 2 5 решений, так что общее число решений равно 64.

Как видите, каждая задача на решение системы уравнений требует своего подхода. Общим приемом является выполнение эквивалентных преобразований для упрощения уравнений. Общим приемом является и построение деревьев решений. Применяемый подход частично напоминает построение таблицы истинности с той особенностью, что строятся не все наборы возможных значений переменных, а лишь те, на которых функция принимает значение 1 (истина). Часто в предлагаемых задачах нет необходимости в построении полного дерева решений, поскольку уже на начальном этапе удается установить закономерность появления новых ветвей на каждом следующем уровне, как это сделано, например, в задаче 18.

В целом задачи на нахождение решений системы логических уравнений являются хорошими математическими упражнениями.

Если задачу трудно решить вручную, то можно поручить решение задачи компьютеру, написав соответствующую программу решения уравнений и систем уравнений.

Написать такую программу несложно. Такая программа легко справится со всеми задачами, предлагаемыми в ЕГЭ.

Как это ни странно, но задача нахождения решений систем логических уравнений является сложной и для компьютера, оказывается и у компьютера есть свои пределы. Компьютер может достаточно просто справиться с задачами, где число переменных 20 -30, но начнет надолго задумываться на задачах большего размера. Дело в том, что функция 2 n , задающая число наборов, является экспонентой, быстро растущей с увеличением n. Настолько быстро, что обычный персональный компьютер за сутки не справится с задачей, у которой 40 переменных.

Программа на языке C# для решения логических уравнений

Написать программу для решения логических уравнений полезно по многим причинам, хотя бы потому, что с ее помощью можно проверять правильность собственного решения тестовых задач ЕГЭ. Другая причина в том, что такая программа является прекрасным примером задачи на программирование, соответствующей требованиям, предъявляемым к задачам категории С в ЕГЭ.

Идея построения программы проста, — она основана на полном переборе всех возможных наборов значений переменных. Поскольку для заданного логического уравнения или системы уравнений число переменных n известно, то известно и число наборов – 2 n , которые требуется перебрать. Используя базовые функции языка C# — отрицание, дизъюнкцию, конъюнкцию и тождество, нетрудно написать программу, которая для заданного набора переменных вычисляет значение логической функции, соответствующей логическому уравнению или системе уравнений.

В такой программе нужно построить цикл по числу наборов, в теле цикла по номеру набора сформировать сам набор, вычислить значение функции на этом наборе, и если это значение равно 1, то набор дает решение уравнения.

Единственная сложность, возникающая при реализации программы, связана с задачей формирования по номеру набора самого набора значений переменных. Красота этой задачи в том, что эта, казалось бы, трудная задача, фактически сводится к простой, уже неоднократно возникавшей задаче. Действительно, достаточно понять, что соответствующий числу i набор значений переменных, состоящий из нулей и единиц, представляет двоичную запись числа i. Так что сложная задача получения набора значений переменных по номеру набора сводится к хорошо знакомой задаче перевода числа в двоичную систему.

Вот как выглядит функция на языке C#, решающая нашу задачу:

///

/// программа подсчета числа решений

/// логического уравнения (системы уравнений)

///

///

/// логическая функция — метод,

/// сигнатура которого задается делегатом DF

///

/// число переменных

/// число решений

static int SolveEquations(DF fun, int n)

bool set = new bool[n];

int m = (int)Math.Pow(2, n); //число наборов

int p = 0, q = 0, k = 0;

//Полный перебор по числу наборов

for (int i = 0; i < m; i++)

//Формирование очередного набора — set,

//заданного двоичным представлением числа i

for (int j = 0; j < n; j++)

k = (int)Math.Pow(2, j);

//Вычисление значения функции на наборе set

Для понимания программы, надеюсь, достаточно сделанных объяснений идеи программы и комментариев в ее тексте. Остановлюсь лишь на пояснении заголовка приведенной функции. У функции SolveEquations два входных параметра. Параметр fun задает логическую функцию, соответствующую решаемому уравнению или системе уравнений. Параметр n задает число переменных функции fun. В качестве результата функция SolveEquations возвращает число решений логической функции, то есть число тех наборов, на которых функция принимает значение true.

Для школьников привычно, когда у некоторой функции F(x) входным параметром x является переменная арифметического, строкового или логического типа. В нашем случае используется более мощная конструкция. Функция SolveEquations относится к функциям высшего порядка – функциям типа F(f), у которых параметрами могут быть не только простые переменные, но и функции.

Класс функций, которые могут передаваться в качестве параметра функции SolveEquations, задается следующим образом:

delegate bool DF(bool vars);

Этому классу принадлежат все функции, которым в качестве параметра передается набор значений логических переменных, заданных массивом vars. В качестве результата возвращается значение булевского типа, представляющее значение функции на этом наборе.

В заключение приведу программу, в которой функция SolveEquations используется для решения нескольких систем логических уравнений. Функция SolveEquations является частью приводимого ниже класса ProgramCommon:

class ProgramCommon

delegate bool DF(bool vars);

static void Main(string args)

Console.WriteLine(«У Функции And решений — » +

SolveEquations(FunAnd, 2));

Console.WriteLine(«У Функции 51 решений — » +

SolveEquations(Fun51, 5));

Console.WriteLine(«У Функции 53 решений — » +

SolveEquations(Fun53, 10));

static bool FunAnd(bool vars)

return vars && vars;

static bool Fun51(bool vars)

f = f && (!vars || vars);

f = f && (!vars || vars);

f = f && (!vars || vars);

f = f && (!vars || vars);

f = f && (!vars || vars);

static bool Fun53(bool vars)

f = f && ((vars == vars) || (vars == vars));

f = f && ((vars == vars) || (vars == vars));

f = f && ((vars == vars) || (vars == vars));

f = f && ((vars == vars) || (vars == vars));

f = f && ((vars == vars) || (vars == vars));

f = f && ((vars == vars) || (vars == vars));

f = f && (!((vars == vars) || (vars == vars)));

Вот как выглядят результаты решения по этой программе:

10 задач для самостоятельной работы

  1. Какие из трех функций эквивалентны:
    1. (X → Y) ˅ ¬Y
    2. ¬(X ˅ ¬Y) ˄ (X → ¬Y)
    3. ¬X ˄ Y
  2. Дан фрагмент таблицы истинности:
X 1 X 2 X 3 X 4 F
1 0 0 1 1
0 1 1 1 1
1 0 1 0 0

Какой из трех функций соответствует этот фрагмент:

  1. (X 1 ˅ ¬X 2) ˄ (X 3 → X 4)
  2. (X 1 → X 3) ˄ X 2 ˅ X 4
  3. X 1 ˄ X 2 ˅ (X 3 → (X 1 ˅ X 4))
  4. В состав жюри входят три человека. Решение принимается, если за него голосует председатель жюри, поддержанный хотя бы одним из членов жюри. В противном случае решение не принимается. Постройте логическую функцию, формализующую процесс принятия решения.
  5. X выигрывает у Y, если при четырех бросаниях монеты трижды выпадает «орёл». Задайте логическую функцию, описывающую выигрыш X.
  6. Слова в предложении нумеруются, начиная с единицы. Предложение считается правильно построенным, если выполняются следующие правила:
    1. Если четное в нумерации слово заканчивается на гласную, то следующее слово, если оно существует, должно начинаться с гласной.
    2. Если нечетное в нумерации слово заканчивается согласной, то следующее слово, если оно существует, должно начинаться с согласной и заканчиваться гласной.
      Какие из следующих предложений правильно построены:
    3. Мама мыла Машу мылом.
    4. Лидер всегда является образцом.
    5. Правда хорошо, а счастье лучше.
  7. Сколько решений имеет уравнение:
    (a ˄ ¬ b) ˅ (¬a ˄ b) → (c ˄ d) = 1
  8. Перечислите все решения уравнения:
    (a → b) → c = 0
  9. Сколько решений имеет следующая система уравнений:
    X 0 → X 1 ˄ X 1 → X 2 = 1
    X 2 → X 3 ˄ X 3 → X 4 = 1
    X 5 → X 6 ˄ X 6 → X 7 = 1
    X 7 → X 8 ˄ X 8 → X 9 = 1
    X 0 → X 5 = 1
  10. Сколько решений имеет уравнение:
    ((((X 0 → X 1) → X 2) → X 3) →X 4) →X 5 = 1

Ответы к задачам:

  1. Эквивалентными являются функции b и c.
  2. Фрагмент соответствует функции b.
  3. Пусть логическая переменная P принимает значение 1, когда председатель жюри голосует «за» принятие решения. Переменные M 1 и M 2 представляют мнение членов жюри. Логическая функция, задающая принятие положительного решения может быть записана так:
    P ˄ (M 1 ˅ M 2)
  4. Пусть логическая переменная P i принимает значение 1, когда при i-м бросании монеты выпадает «орёл». Логическая функция, задающая выигрыш X может быть записана так:
    ¬((¬P 1 ˄ (¬P 2 ˅ ¬P 3 ˅ ¬P 4)) ˅
    (¬P 2 ˄ (¬P 3 ˅ ¬P 4)) ˅
    (¬P 3 ˄ ¬P 4))
  5. Предложение b.
  6. Уравнение имеет 3 решения: (a = 1; b = 1; c = 0); (a = 0; b = 0; c = 0); (a = 0; b = 1; c = 0)

Способы решения систем логических уравнений

Киргизова Е.В., Немкова А.Е.

Лесосибирский педагогический институт –

филиал Сибирского федерального университета, Россия

Умение мыслить последовательно, рассуждать доказательно, строить гипотезы, опровергать негативные выводы, не приходит само по себе, это умение развивает наука логика . Логика – это наука, изучающая методы установленияистинности или ложности одних высказываний на основе истинности или ложности других высказываний .

Овладение азами этой науки невозможно без решения логических задач. Проверка сформированности умений применять свои знания в новой ситуации осуществляется за счет сдачи. В частности, это умение решать логические задачи. Задания В15 в ЕГЭ, являются заданиями повышенной сложности, так как они содержат системы логических уравнений. Можно выделить различные способы решения систем логических уравнений. Это сведение к одному уравнению, построение таблицы истинности, декомпозиция, последовательное решение уравнений и т.д.

Задача: Решить систему логических уравнений:

Рассмотрим метод сведения к одному уравнению . Данный метод предполагает преобразование логических уравнений, таким образом, чтобы правые их части были равны истинностному значению (то есть 1). Для этого применяют операцию логического отрицания. Затем, если в уравнениях есть сложные логические операции, заменяем их базовыми: «И», «ИЛИ», «НЕ». Следующим шагом объединяем уравнения в одно, равносильное системе, с помощью логической операции «И». После этого, следует сделать преобразования полученного уравнения на основе законов алгебры логики и получить конкретное решение системы.

Решение 1: Применяем инверсию к обеим частям первого уравнения:

Представим импликацию через базовые операции «ИЛИ», «НЕ»:

Поскольку левые части уравнений равны 1, можно объединить их с помощью операции “И” в одно уравнение, равносильное исходной системе:

Раскрываем первую скобку по закону де Моргана и преобразовываем полученный результат:

Полученное уравнение, имеет одно решение: A =0 , B =0 и C =1 .

Следующий способ – построение таблиц истинности . Поскольку логические величины имеют только два значения, можно просто перебрать все варианты и найти среди них те, при которых выполняется данная система уравнений. То есть, мы строим одну общую таблицу истинности для всех уравнений системы и находим строку с нужными значениями.

Решение 2: Составим таблицу истинности для системы:

0

0

1

1

0

1

Полужирным выделена строчка, для которой выполняются условия задачи. Таким образом, A =0 , B =0 и C =1 .

Способ декомпозиции . Идея состоит в том, чтобы зафиксировать значение одной из переменных (положить ее равной 0 или 1) и за счет этого упростить уравнения. Затем можно зафиксировать значение второй переменной и т.д.

Решение 3: Пусть A = 0, тогда :

Из первого уравнения получаем B =0, а из второго – С=1. Решение системы: A = 0 , B = 0 и C = 1 .

Так же можно воспользоваться методом последовательного решения уравнений , на каждом шаге добавляя по одной переменной в рассматриваемый набор. Для этого необходимо преобразовать уравнения таким образом, что бы переменные вводились в алфавитном порядке. Далее строим дерево решений, последовательно добавляя в него переменные.

Первое уравнение системы зависит только от A и B , а второе уравнение от А и C . Переменная А может принимать 2 значения 0 и 1:


Из первого уравнения следует, что , поэтому при A = 0 п олучаем B = 0 , а при A = 1 имеем B = 1 . Итак, первое уравнение имеет два решения относительно переменных A и B .

Изобразим второе уравнение, из которого определим значения C для каждого варианта. При A =1 импликация не может быть ложной, то есть вторая ветка дерева не имеет решения. При A =0 получаем единственное решение C = 1 :

Таким образом, получили решение системы: A = 0 , B = 0 и C = 1 .

В ЕГЭ по информатике очень часто требуется определить количество решений системы логических уравнений, без нахождения самих решений, для этого тоже существуют определенные методы. Основной способ нахождения количества решений системы логических уравнений – замена переменных . Сначала необходимо максимально упростить каждое из уравнений на основе законов алгебры логики, а затем заменить сложные части уравнений новыми переменными и определить количество решений новой системы. Далее вернуться к замене и определить для нее количество решений.

Задача: Сколько решений имеет уравнение (A → B ) + (C → D ) = 1? Где A, B, C, D – логические переменные.

Решение: Введем новые переменные: X = A → B и Y = C → D . С учетом новых переменных уравнение запишется в виде: X + Y = 1.

Дизъюнкция верна в трех случаях: (0;1), (1;0) и (1;1), при этом X и Y является импликацией, то есть является истинной в трех случаях и ложной – в одном. Поэтому случай (0;1) будет соответствовать трем возможным сочетаниям параметров. Случай (1;1) – будет соответствовать девяти возможным сочетаниям параметров исходного уравнения. Значит, всего возможных решений данного уравнения 3+9=15.

Следующий способ определения количества решений системы логических уравнений – бинарное дерево . Рассмотрим данный метод на примере.

Задача: Сколько различных решений имеет система логических уравнений:

Приведенная система уравнений равносильна уравнению:

( x 1 x 2 )*( x 2 x 3 )*…*( x m -1 x m ) = 1.

Предположим, что x 1 – истинно, тогда из первого уравнения получаем, что x 2 также истинно, из второго - x 3 =1, и так далее до x m = 1. Значит набор (1; 1; …; 1) из m единиц является решением системы. Пусть теперь x 1 =0, тогда из первого уравнения имеем x 2 =0 или x 2 =1.

Когда x 2 истинно получаем, что остальные переменные также истинны, то есть набор (0; 1; …; 1) является решением системы. При x 2 =0 получаем, что x 3 =0 или x 3 =, и так далее. Продолжая до последней переменной, получаем, что решениями уравнения являются следующие наборы переменных (m +1 решение, в каждом решении по m значений переменных):

(1; 1; 1; …; 1)

(0; 1; 1; …; 1)

(0; 0; 0; …; 0)

Такой подход хорошо иллюстрируется с помощью построения бинарного дерева. Количество возможных решений – количество различных ветвей построенного дерева. Легко заметить, что оно равно m +1.

Переменные

Дерево

Количество решений

x 1

x 2

x 3

В случае трудностей в рассуждениях и построении дерева решений можно искать решение с использованием таблиц истинности , для одного – двух уравнений.

Перепишем систему уравнений в виде:

И составим таблицу истинности отдельно для одного уравнения:

x 1

x 2

(x 1 → x 2)

Составим таблицу истинности для двух уравнений:

x 1

x 2

x 3

x 1 → x 2

x 2 → x 3

(x 1 → x 2) * (x 2 → x 3)

Далее можно увидеть, что одно уравнение истинно в следующих трех случаях: (0; 0), (0; 1), (1; 1). Система двух уравнений истина в четырех случаях (0; 0; 0), (0; 0; 1), (0; 1; 1), (1; 1; 1). При этом сразу видно, что существует решение, состоящее из одних нулей и еще m решений, в которых добавляется по одной единице, начиная с последней позиции до заполнения всех возможных мест. Можно предположить, что общее решение будет иметь такой же вид, но чтобы такой подход стал решением, требуется доказательство, что предположение верно.

Подводя итог всему вышесказанному, хочется обратить внимание, на то, что не все рассмотренные методы являются универсальными. При решении каждой системы логических уравнений следует учитывать ее особенности, на основе которых и выбирать метод решения.

Литература:

1. Логические задачи / О.Б. Богомолова – 2-е изд. – М.: БИНОМ. Лаборатория знаний, 2006. – 271 с.: ил.

2. Поляков К.Ю. Системы логических уравнений / Учебно-методическая газета для учителей информатики: Информатика №14, 2011 г.