Медицина и здоровье

Наследие Тьюринга: машина, тест и полнота. Алгоритмы. Машина Тьюринга. Альтернативные определения алгоритма. Теория вычислимости и проблема останова Как работать в машине тьюринга

До сих пор нам было удобно ссылаться на программистский опыт , говоря об алгоритмах, программах, интерпретаторах, пошаговом выполнении и т.д. Это позволяло нам игнорировать детали построения тех или иных алгоритмов под тем предлогом, что читатель их легко восстановит (или хотя бы поверит все-таки не каждый читатель в своей жизни писал интерпретатор паскаля на паскале).

Но в некоторых случаях этого недостаточно. Пусть, например, мы хотим доказать алгоритмическую неразрешимость какой-то задачи, в определении которой ничего не говорится о программах (в этом разделе, например, мы докажем неразрешимость проблемы равенства слов в полугруппах , заданных образующими и соотношениями). Это обычно делается так. Мы показываем, что проблема остановки сводится к этой задаче. Для этого мы моделируем работу произвольного алгоритма в терминах рассматриваемой задачи (что это значит, будет видно из приводимого ниже примера). При этом нам важно, чтобы определение алгоритма было как можно проще.

Таким образом, наш план таков. Мы опишем довольно просто определяемый класс машин (его можно выбирать по-разному, мы будем использовать так называемые машины Тьюринга), затем объявим, что всякая вычислимая функция может быть вычислена на такой машине, а затем покажем, что вопрос об остановке машины Тьюринга можно свести к вопросу о равенстве слов в полугруппе.

Другая причина, по которой важны простые вычислительные модели (таких моделей много разные виды машин Тьюринга, адресные машины и т.п.), связана с теорией сложности вычислений, когда нас начинает интересовать время выполнения программ. Но этот вопрос выходит за рамки классической теории алгоритмов.

Машины Тьюринга: определение

Машина Тьюринга имеет бесконечную в обе стороны ленту , разделенную на квадратики (ячейки ). В каждой ячейке может быть записан некоторый символ из фиксированного (для данной машины) конечного множества , называемого алфавитом данной машины. Один из символов алфавита выделен и называется " пробелом" предполагается, что изначально вся лента пуста, то есть заполнена пробелами.

Машина Тьюринга может менять содержимое ленты с помощью специальной читающей и пишущей головки , которая движется вдоль ленты. В каждый момент головка находится в одной из ячеек. Машина Тьюринга получает от головки информацию о том, какой символ та видит, и в зависимости от этого (и от своего внутреннего состояния) решает, что делать, то есть какой символ записать в текущей ячейке и куда сдвинуться после этого (налево, направо или остаться на месте). При этом также меняется внутреннее состояние машины (мы предполагаем, что машина не считая ленты имеет конечную память , то есть конечное число внутренних состояний). Еще надо договориться, с чего мы начинаем и когда кончаем работу.

Таким образом, чтобы задать машину Тьюринга, надо указать следующие объекты:

Таблица переходов устроена следующим образом: для каждой пары указана тройка . Здесь сдвиг одно из чисел -1 (влево), 0 (на месте) и 1 (направо). Таким образом, таблица переходов есть функция типа S x A -> S x A x {-1,0,1} , определенная на тех парах, в которых состояние не является заключительным.

Остается описать поведение машины Тьюринга. В каждый момент имеется некоторая конфигурация , складывающаяся из содержимого ленты (формально говоря, содержимое ленты есть произвольное отображение Z -> A ), текущей позиции головки (некоторое целое число ) и текущего состояния машины (элемент S ). Преобразование конфигурации в следующую происходит по естественным правилам: мы смотрим в таблице, что надо делать для данного состояния и для данного символа, то есть выясняем новое состояние машины, меняем символ на указанный и после этого сдвигаем головку влево, вправо или оставляем на месте. При этом, если новое состояние является одним из заключительных, работа машины заканчивается. Остается договориться, как мы подаем информацию на вход машины и что считается результатом ее работы. Будем считать, что алфавит машины, помимо пробела, содержит символы 0 и 1 (а также, возможно, еще какие-то символы). Входом и выходом машины будут конечные последовательности нулей и единиц (двоичные слова). Входное слово записывается на пустой ленте, головка машины ставится в его первую клетку, машина приводится в начальное состояние и запускается. Если машина останавливается, результатом считается двоичное слово , которое можно прочесть, начиная с позиции головки и двигаясь направо (пока не появится символ, отличный от 0 и 1 ).

Таким образом, любая машина Тьюринга задает некоторую частичную функцию на двоичных словах. Все такие функции естественно назвать вычислимыми на машинах Тьюринга .

Машины Тьюринга: обсуждение

Разумеется, наше определение содержит много конкретных деталей, которые можно было бы изменить. Например, лента может быть бесконечной только в одну сторону. Можно придать машине две ленты. Можно считать, что машина может либо написать новый символ, либо сдвинуться, но не то и другое вместе. Можно ограничить алфавит , считая, скажем, что в нем должно быть ровно 10 символов. Можно потребовать, чтобы в конце на ленте ничего не было, кроме результата работы (остальные клетки должны быть пусты). Все перечисленные и многие другие изменения не меняют класса вычислимых на машинах Тьюринга функций. Конечно, есть и небезобидные изменения. Например, если запретить машине двигаться налево, то это радикально поменяет дело по существу лента станет бесполезной, так как к старым записям уже нельзя будет вернуться.

Как понять, какие изменения безобидны, а какие нет? Видимо, тут необходим некоторый опыт практического программирования на машинах Тьюринга, хотя бы небольшой. После этого уже можно представлять себе возможности машины, не выписывая программы полностью, а руководствуясь лишь приблизительным описанием. В качестве примера опишем машину, которая удваивает входное слово (изготавливает слово XX , если на входе было слово X ).

Если машина видит пробел ( входное слово пусто), она кончает работу. Если нет, она запоминает текущий символ и ставит пометку (в алфавите помимо символов 0 и 1 будут еще их " помеченные варианты" и ). Затем она движется направо до пустой клетки, после чего пишет там копию запомненного символа. Затем она движется налево до пометки; уткнувшись в пометку, отходит назад и запоминает следующий символ и так далее, пока не скопирует все слово .

Имея некоторый опыт , можно за всеми этими фразами видеть конкретные куски программы для машины Тьюринга. Например, слова " запоминает символ и движется направо" означают, что есть две группы состояний, одна для ситуации, когда запомнен нуль, другая когда запомнена единица , и внутри каждой группы запрограммировано движение направо до первой пустой клетки.

Имея еще чуть больше опыта, можно понять, что в этом описании есть ошибка не предусмотрен механизм остановки, когда все слово будет скопировано, поскольку копии символов ничем не отличаются от символов исходного слова. Ясно и то, как ошибку исправить надо в качестве копий писать специальные символы и , а на последнем этапе все пометки удалить.

77 . Покажите, что функция " обращение", переворачивающая слово задом наперед, вычислима на машине Тьюринга.

Другой пример неформального рассуждения: объясним, почему можно не использовать дополнительных символов, кроме 0 , 1 и пустого символа. Пусть есть машина с большим алфавитом из N символов. Построим новую машину, которая будет моделировать работу старой, но каждой клетке старой будет соответствовать блок из k клеток новой. Размер блока (число k ) будет фиксирован так, чтобы внутри блока можно было бы закодировать нулями и единицами все символы большого алфавита. Исходные символы 0 , 1 и пустой будем кодировать как 0 , за которым идут (k-1) пустых символов, 1 , за которым идут (k-1) пустых символов, и группу из k пустых символов. Для начала надо раздвинуть буквы входного слова на расстояние k , что можно сделать без дополнительных символов (дойдя до крайней буквы, отодвигаем ее, затем дойдя до следующей, отодвигаем ее и крайнюю и так далее); надо только понимать, что можно идентифицировать конец слова как позицию, за которой следует более k пустых символов. Ясно, что в этом процессе мы должны хранить в памяти некоторый конечный объем информации, так что это возможно. После этого уже можно моделировать работу исходной машины по шагам, и для этого тоже достаточно конечной памяти (е конечного числа состояний), так как нам важна только небольшая окрестность головки моделируемой машины. Наконец, надо сжать результат обратно.

В заключение обсуждения приведем обещанный выше аргумент в пользу того, что любая вычислимая функция вычислима на машине Тьюринга. Пусть есть функция , которую человек умеет вычислять. При этом, он, естественно, должен использовать карандаш и бумагу, так как количество информации , которое он может хранить " в уме", ограничено. Будем считать, что он пишет на отдельных листах бумаги. Помимо текущего листа, есть стопка бумаг справа и стопка слева; в любую из них можно положить текущий лист , завершив с ним работу, а из другой стопки взять следующий. У человека есть карандаш и ластик. Поскольку очень мелкие буквы не видны, число отчетливо различимых состояний листа конечно, и можно считать, что в каждый момент на листе записана одна буква из некоторого конечного (хотя и весьма большого) алфавита. Человек тоже имеет конечную память , так что его состояние есть элемент некоторого конечного множества . При этом можно составить некоторую таблицу, в которой записано, чем кончится его работа над листом с данным содержимым, начатая в данном состоянии (что будет на листе, в каком состоянии будет человек и из какой пачки будет взят следующий лист ). Теперь уже видно, что действия человека как раз соответствуют работе машины Тьюринга с большим (но конечным) алфавитом и большим (но конечным) числом внутренних состояний.

Машина Тьюринга - это совокупность следующих объектов

  • 1) внешний алфавит A={a 0 , a 1 , …, a n };
  • 2) внутренний алфавит Q={q 1 , q 2 ,…, q m } - множество состояний;
  • 3) множество управляющих символов {П, Л, С}
  • 4) бесконечная в обе стороны лента, разделённая на ячейки, в каждую из которых в любой дискретный момент времени может быть записан только один символ из алфавита А;
  • 5) управляющее устройство, способное находиться в одном из множества состояний

Символом пустой ячейки является буква внешнего алфавита а 0 .

Среди состояний выделяются начальное q 1 , находясь в котором машина начинает работать, и заключительное (или состояние остановки) q 0 , попав в которое машина останавливается.

Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки ленты символы алфавита A. Управляющее устройство работает согласно командам, которые имеют следующий вид

q i a j > a p X q k

Запись означает следующее: если управляющее устройство находится в состоянии q i , а в обозреваемой ячейке записана буква a j , то (1) в ячейку вместо a j записывается a p , (2) машина переходит к обозрению следующей правой ячейки от той, которая обозревалась только что, если Х= П, или к обозрению следующей левой ячейки, если Х= Л, или же продолжает обозревать ту же ячейку ленты, если Х= С, (3) управляющее устройство переходит в состояние q k.

Поскольку работа машины, по условию, полностью определяется ее состоянием q, в данный момент и содержимым а обозреваемой в этот момент ячейки, то для каждой возможной конфигурации q i a j имеется ровно одно правило. Правил нет только для заключительного состояния, попав в которое машина останавливается. Поэтому программа машины Тьюринга с внешним алфавитом A={a0, a1, …, an} и внутренним Q={q1, q2,…, qm} содержит не более m (n+ 1) команд.

Словом в алфавите А или в алфавите Q, или в алфавите A Q называется любая последовательность букв соответствующего алфавита. Под k-ой конфигурацией будем понимать изображение ленты машины с информацией, сложившейся на ней к началу k-того шага (или слово в алфавите А, записанное на ленту к началу k-того шага), с указанием того, какая ячейка обозревается в этот шаг и в каком состоянии находится машина. Имеют смысл лишь конечные конфигурации, т.е. такие, в которых все ячейки ленты, за исключением, быть может, конечного числа, пусты. Конфигурация называется заключительной, если состояние, в котором при этом находится машина, заключительное.

Если выбрать какую-либо незаключительную конфигурацию машины Тьюринга в качестве исходной, то работа машины будет состоять в том, чтобы последовательно (шаг за шагом) преобразовывать исходную конфигурацию в соответствии с программой машины до тех пор, пока не будет достигнута заключительная конфигурация. После этого работа машины Тьюринга считается закончившейся, а результатом работы считается достигнутая заключительная конфигурация.

Будем говорить, что непустое слово б в алфавите А {а 0 } = {a 1 , …, a n } воспринимается машиной в стандартном положении, если оно записано в последовательных ячейках ленты, все другие ячейки пусты, и машина обозревает крайнюю слева или крайнюю справа ячейку из тех, в которых записано слово б. Стандартное положение называется начальным (заключительным), если машина, воспринимающая слово в стандартном положении, находится в начальном состоянии q 1 (соответственно в состоянии остановки q 0).

Если обработка слова б переводит машину Тьюринга в заключительное состояние, то говорят, что она применима к б, в противном случае - не применима к б (машина работает бесконечно)

Рассмотрим пример:

Дана машина Тьюринга с внешним алфавитом А = {0, 1} (здесь 0 - символ пустой ячейки), алфавитом внутренних состояний Q = {q 0 , q 1 , q 2 } и со следующей функциональной схемой (программой):

q 1 0 > 1 Л q 2 ;

q 1 1 > 0 С q 2 ;

q 2 0 > 0 П q 0 ;

q 2 1 > 1 С q 1 ;

Данную программу можно записать с помощью таблицы

На первом шаге действует команда: q 1 0 > 1 Л q 2 (управляющее устройство находится в состоянии q1, а в обозреваемой ячейке записана буква 0, в ячейку вместо 0 записывается 1, головка сдвигается влево, управляющее устройство переходит в состояние q2), в результате на машине создается следующая конфигурация:

Наконец, после выполнения команды q 2 0 > 0 П q 0 создается конфигурация

Эта конфигурация является заключительной, потому что машина оказалась в состоянии остановки q 0 .

Таким образом, исходное слово 110 переработано машиной в слово 101.

Полученную последовательность конфигураций можно записать более коротким способом (содержимое обозреваемой ячейки записано справа от состояния, в котором находится в данный момент машина):

11q 1 0 => 1 q 2 11 => 1q 1 11 => 1q 2 01 => 10q 0 1

Машина Тьюринга - не что иное, как некоторое правило (алгоритм) для преобразования слов алфавита A Q, т.е. конфигураций. Таким образом, для определения машины Тьюринга нужно задать ее внешний и внутренний алфавиты, программу и указать, какие из символов обозначают пустую ячейку и заключительное состояние.

После 1920-х годов выражение вычислительная машина относят к любым машинам, которые выполняли работу человека-компьютера , особенно к тем, которые были разработаны в соответствии с эффективными методами тезиса Чёрча - Тьюринга . Этот тезис формулируется как: «Всякий алгоритм может быть задан в виде соответствующей машины Тьюринга или частично рекурсивного определения, а класс вычислимых функций совпадает с классом частично рекурсивных функций и с классом функций, вычислимых на машинах Тьюринга» . По-другому, тезис Чёрча-Тьюринга определяется как гипотеза о природе механических устройств расчетов, таких как электронно-вычислительные машины. Любое вычисление, какое только возможно, может быть выполнено на компьютере, при условии, что в нем достаточно времени и места для хранения.

Механизмы, работающие над вычислениями с бесконечностями, стали известны как аналоговый тип. Значения в таких механизмах представлялись непрерывными числовыми величинами, например, угол вращения вала или разность электрического потенциала .

В отличие от аналоговых, цифровые машины имели возможность представлять состояние числового значения и хранить отдельно каждую цифру. Цифровые машины использовали различные процессоры или реле до изобретения устройства с оперативной памятью .

Название вычислительная машина с 1940-х начало вытесняться понятием компьютер . Те компьютеры были в состоянии выполнять вычисления, которые раньше выполняли клерки. Начиная с того, как значения перестали зависеть от физических характеристик (как в аналоговых машинах), логический компьютер, основанный на цифровом оборудовании, был в состоянии сделать всё, что может быть описано чисто механической системой .

Машины Тьюринга были разработаны, чтобы формально математически определить, что может быть вычислено с учетом ограничений на вычислительную способность. Если машина Тьюринга может выполнить задачу, то задача считается вычислимой по Тьюрингу. Тьюринг в основном сосредоточился на проектировании машины, которая могла определить, что может быть вычислено. Тьюринг сделал вывод, что, пока существует машина Тьюринга, которая могла бы вычислять приближение числа, это значение исчислимо. Кроме того, машина Тьюринга может интерпретировать логические операторы , такие как AND, OR, XOR, NOT, и «Если-То-Иначе», чтобы определить, является ли

Машина Тьюринга - одно из самых интригующих и захватывающих интеллектуальных открытий 20-го века. Это простая и полезная абстрактная модель вычислений (компьютерных и цифровых), которая является достаточно общей для воплощения любой компьютерной задачи. Благодаря простому описанию и проведению математического анализа она образует фундамент теоретической информатики. Это исследование привело к более глубокому познанию цифровых компьютеров и исчислений, включая понимание того, что существуют некоторые вычислительные проблемы, не решаемые на общих пользовательских ЭВМ.

Что это и кто создал

Алан Тьюринг стремился описать наиболее примитивную модель механического устройства, которая имела бы те же основные возможности, что и компьютер. Тьюринг впервые описал машину в 1936 году в статье "О вычислимых числах с приложением к проблеме разрешимости", которая появилась в Трудах Лондонского математического общества.

Машина Тьюринга является вычислительным устройством, состоящим из головки чтения/записи (или «сканера») с бумажной лентой, проходящей через него. Лента разделена на квадраты, каждый из которых несет одиночный символ - "0" или "1". Назначение механизма состоит в том, что он выступает и как средство для входа и выхода, и как рабочая память для хранения результатов промежуточных этапов вычислений.

Из чего состоит устройство

Каждая такая машина состоит из двух составляющих:

  1. Неограниченная лента. Она является бесконечной в обе стороны и разделена на ячейки.
  2. Автомат - управляемая программа, головка-сканер для считывания и записи данных. Она может находиться в каждый момент в одном из множества состояний.

Каждая машина связывает два конечных ряда данных: алфавит входящих символов A = {a0, a1, ..., am} и алфавит состояний Q = {q0, q1, ..., qp}. Состояние q0 называют пассивным. Считается, что устройство заканчивает свою работу, когда попадает именно на него. Состояние q1 называют начальным - машина начинает свои вычисления, находясь на старте в нем. Входное слово располагается на ленте по одной букве подряд в каждой позиции. С обеих сторон от него располагаются только пустые ячейки.

Как работает механизм

Машина Тьюринга имеет принципиальное отличие от вычислительных устройств - ее запоминающее приспособление имеет бесконечную ленту, тогда как у цифровых аппаратов такое устройство имеет полосу определенной длины. Каждый класс заданий решает только одна построенная машина Тьюринга. Задачи иного вида предполагают написание нового алгоритма.

Управляющее устройство, находясь в одном состоянии, может передвигаться в любую сторону по ленте. Оно записывает в ячейки и считывает с них символы конечного алфавита. В процессе перемещения выделяется пустой элемент, который заполняет позиции, не содержащие входные данные. Алгоритм для машины Тьюринга определяет правила перехода для управляющего устройства. Они задают головке записи-чтения такие параметры: запись в ячейку нового символа, переход в новое состояние, перемещение влево или вправо по ленте.

Свойства механизма

Машина Тьюринга, как и другие вычислительные системы, имеет присущие ей особенности, и они сходны со свойствами алгоритмов:

  1. Дискретность. Цифровая машина переходит к следующему шагу n+1 только после того, как будет выполнен предыдущий. Каждый выполненный этап назначает, каким будет n+1.
  2. Понятность. Устройство выполняет только одно действие для одной же ячейки. Оно вписывает символ из алфавита и делает одно движение: влево или вправо.
  3. Детерминированность. Каждой позиции в механизме соответствует единственный вариант выполнения заданной схемы, и на каждом этапе действия и последовательность их выполнения однозначны.
  4. Результативность. Точный результат для каждого этапа определяет машина Тьюринга. Программа выполняет алгоритм и за конечное число шагов переходит в состояние q0.
  5. Массовость. Каждое устройство определено над допустимыми словами, входящими в алфавит.

Функции машины Тьюринга

В решении алгоритмов часто требуется реализация функции. В зависимости от возможности написания цепочки для вычисления, функцию называют алгоритмически разрешимой или неразрешимой. В качестве множества натуральных или рациональных чисел, слов в конечном алфавите N для машины рассматривается последовательность множества В - слова в рамках двоичного кодового алфавита В={0.1}. Также в результат вычисления учитывается «неопределенное» значение, которое возникает при «зависании» алгоритма. Для реализации функции важно наличие формального языка в конечном алфавите и решаемость задачи распознавания корректных описаний.

Программа для устройства

Программы для механизма Тьюринга оформляются таблицами, в которых первые строка и столбец содержат символы внешнего алфавита и значения возможных внутренних состояний автомата - внутренний алфавит. Табличные данные являются командами, которые воспринимает машина Тьюринга. Решение задач происходит таким образом: буква, считываемая головкой в ячейке, над которой она в данный момент находится, и внутреннее состояние головки автомата обусловливают, какую из команд необходимо выполнять. Конкретно такая команда находится на пересечении символов внешнего алфавита и внутреннего, находящихся в таблице.

Составляющие для вычислений

Чтобы построить машину Тьюринга для решения одной определенной задачи, необходимо определить для нее следующие параметры.

Внешний алфавит. Это некоторое конечное множество символов, обозначающихся знаком А, составляющие элементы которого именуются буквами. Один из них - а0 - должен быть пустым. Для примера, алфавит устройства Тьюринга, работающего с двоичными числами, выглядит так: A = {0, 1, а0}.

Непрерывная цепочка букв-символов, записываемая на ленту, именуется словом.

Автоматом называется устройство, которое работает без вмешательства людей. В машине Тьюринга он имеет для решения задач несколько различных состояний и при определенно возникающих условиях перемещается из одного положения в другое. Совокупность таких состояний каретки есть внутренний алфавит. Он имеет буквенное обозначение вида Q={q1, q2...}. Одно из таких положений - q1 - должно являться начальным, то есть тем, что запускает программу. Еще одним необходимым элементом является состояние q0, которое является конечным, то есть тем, что завершает программу и переводит устройство в позицию остановки.

Таблица переходов. Эта составляющая представляет собой алгоритм поведения каретки устройства в зависимости от того, каковы в данный момент состояние автомата и значение считываемого символа.

Алгоритм для автомата

Кареткой устройства Тьюринга во время работы управляет программа, которая во время каждого шага выполняет последовательность следующих действий:

  1. Запись символа внешнего алфавита в позицию, в том числе и пустого, осуществляя замену находившегося в ней, в том числе и пустого, элемента.
  2. Перемещение на один шаг-ячейку влево или же вправо.
  3. Изменение своего внутреннего состояния.

Таким образом, при написании программ для каждой пары символов либо положений необходимо точно описать три параметра: a i - элемент из выбранного алфавита A, направление сдвига каретки ("←” влево, "→” вправо, "точка” — отсутствие перемещения) и q k - новое состояние устройства. К примеру, команда 1 "←” q 2 имеет значение "заместить символ на 1, сдвинуть головку каретки влево на один шаг-ячейку и сделать переход в состояние q 2 ”.

Машина Тьюринга: примеры

Пример 1. Дана задача построить алгоритм, прибавляющий единицу к последней цифре заданного числа, расположенного на ленте. Входные данные - слово - цифры целого десятичного числа, записанные в последовательные ячейки на ленту. В первоначальный момент устройство располагается напротив самого правого символа - цифры числа.

Решение. В случае если последняя цифра равняется 9, то ее нужно заменить на 0 и затем прибавить единицу к предшествующему символу. Программа в этом случае для данного устройства Тьюринга может быть написана так:

Здесь q 1 — состояние изменения цифры, q 0 — остановка. Если в q 1 автомат фиксирует элемент из ряда 0..8, то он замещает ее на один из 1..9 соответственно и затем переключается в состояние q 0 , то есть устройство останавливается. В случае если же каретка фиксирует число 9, то замещает ее на 0, затем перемещается влево, останавливаясь в состоянии q 1 . Такое движение продолжается до того момента, пока устройство не зафиксирует цифру, меньшую 9. Если все символы оказались равными 9, они замещаются нулями, на месте старшего элемента запишется 0, каретка переместится влево и запишет 1 в пустую клетку. Следующим шагом будет переход в состояние q 0 - остановка.

Пример 2. Дан ряд из символов, обозначающих открывающие и закрывающие скобки. Требуется построить устройство Тьюринга, которое выполняло бы удаление пары взаимных скобок, то есть элементов, расположенных подряд - “()”. Например, исходные данные: “) (() (()”, ответ должен быть таким: “) . . . ((”. Решение: механизм, находясь в q 1 , анализирует крайний слева элемент в строке.

Состояние q 1: если встречен символ “(”, то совершить сдвиг вправо и переход в положение q 2 ; если определен “a 0 ”, то остановка.

Состояние q 2: проводится анализ скобки “(” на наличие парности, в случае совпадения должно получиться “)”. Если элемент парный, то сделать возврат каретки влево и перейти в q 3 .

Состояние q 3: осуществить удаление сначала символа “(”, а затем “)” и перейти в q 1 .

Один из важнейших вопросов современной информатики — существует ли формальный исполнитель, с помощью которого можно имитировать любого формального исполнителя. ответ на этот вопрос был получен почти одновременно двумя выдающимися учеными — А. Тьюрингом и Э. Постом. Предложенные ими исполнители отличались друг от друга, но оказалось, что они могут имитировать друг друга, а главное — имитировать работу любого формального исполнителя.

Что такое формальный исполнитель? Что значит — один формальный исполнитель имитирует работу другого формального исполнителя? Если Вы играли в компьютерные игры — на экране объекты беспрекословно подчиняются командам играющего. Каждый объект обладает набором допустимых команд. В то же время компьютер сам является исполнителем, причем не виртуальным, а реальным. Вот и получается, что один формальный исполнитель имитирует работу другого формального исполнителя.

Рассмотрим работу Машины Тьюринга.

Машина Тьюринга представляет собой бесконечную ленту, поделенную на ячейки, и каретку (считывающе-печатающее устройство), которая движется вдоль ленты.

Таким образом Машина Тьюринга формально описывается набором двух алфавитов:

A={a1, a2, a3, …, an} — внешний алфавит, служит для записи исходных данных

Q={q1, q2, q3,…, qm} — внутренний алфавит, описывает набор состояний считывающе-печатного устройства.

Каждая ячейка ленты может содержать символ из внешнего алфавита A = {a0,a1,…,an} (В нашем случае A={0, 1})

Допустимые действия Машины Тьюринга таковы:

1) записать какой-либо символ внешнего алфавита в ячейку ленты (символ, бывший там до того, затирается)

2) сместиться в соседнюю ячейку

3) сменить состояние на одно из обозначенных символом внутреннего алфавита Q

Машина Тьюринга — это автомат, который управляется таблицей.

Строки в таблице соответствуют символам выбранного алфавита A, а столбцы — состояниям автомата Q = {q0,q1,…,qm}. В начале работы машина Тьюринга находится в состоянии q1. Состояние q0 — это конечное состояние, попав в него, автомат заканчивает работу.

В каждой клетке таблицы, соответствующей некоторому символу ai и некоторому состоянию qj, находится команда, состоящая из трех частей
· символ из алфавита A
· направление перемещения: «>» (вправо), «<» (влево) или «.» (на месте)
· новое состояние автомата

В приведенной выше таблице алфавит A ={0, 1, _} (содержит 3 символа), а внутренний алфавит Q={q1, q2, q3, q4, q0}, q0 — состояние, заставляющее каретку остановиться.

Рассмотрим несколько задач решением. Скачать машину Тьюринга Вы можете на сайте в разделе .

Задача 1. Пусть A={0, 1, _}. На ленте в ячейках находятся символы из алфавита в следующем порядке 0011011. каретка находится над первым символом. Необходимо составить программу, которая заменит 0 на 1, 1 на 0 и вернет каретку в первоначальное положение.

Теперь определимся с состояниями каретки. Я называю их — «желания каретки что-то сделать».

q1) Каретка должна пойти вправо: если видит 0 меняет его на 1 и остается в состоянии q1, если видит 1 — меняет его на 0 и остается в состоянии q1, если видит _ — ворачивается назад на 1 ячейку «желает что-то другое», т.е переходит в состояние q2. Запишем наши рассуждения в таблицу исполнителя. Синтаксис смотрите в справке к программе)

q2) Теперь опишем «желание каретки» q2. Мы должны вернуться в первоначальное положение. Для этого: если видим 1 оставляем ее и остаемся в состоянии q2 (с тем же желанием дойти до конца ряда символов); если видим 0 — оставляем его и продолжаем двигаться влево в состоянии q2; видим _ — сдвигается вправо на 1 ячейку. Вот вы оказались там, где требуется в условии задачи. переходим в состояние q0.

Посмотреть работу программы можно на видео:

Задача 2. Дано: конечная последовательность 0 и 1 (001101011101). Необходимо выписать их после данной последовательности, через пустую ячейку, а в данной последовательности заменить их на 0. Например:

Из 001101011101 получим 000000000000 1111111.

Как видите, семь единиц записались после данной последовательности, а на их местах стоят нолики.

Приступим к рассуждениям. Определим, какие состояния необходимы каретке и сколько.

q1) увидел 1 — исправь на нолик и перейди в другое состояние q2 (новое состояние вводится, чтобы каретка не поменяла на нули все единицы за один проход)

q2) ничего не менять, двигаться к концу последовательности

q3) как только каретка увидела пустую ячейку, она делает шаг вправо и рисует единичку, если она видит единичку — то движется дальше, чтобы подписать символ в конце. Как только нарисовал единицу, переходим в состояние q4

q4) проходим по написанным единицам, ничего не меняя. Как только доходим до пустой ячейки, разделяющей последовательность от единиц, переходим с новое состояние q5

q5) в этом состоянии идем начало последовательности, ничего не меняя. Доходим до пустой ячейки, разворачиваемся и переходим в состояние q1

Состояние q0 каретка примет в том случае, когда она пройдет в состоянии q1 до конца данной последовательности и встретит пустую ячейку.

Получим такую программу:

Работу Машины Тьюринга можете посмотреть на видео ниже.